Copied to
clipboard

?

G = C5×C23.41C23order 320 = 26·5

Direct product of C5 and C23.41C23

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C23.41C23, C10.1162- (1+4), C10.1592+ (1+4), (C2×C20)⋊9Q8, C4⋊Q812C10, C4.11(Q8×C10), C20.100(C2×Q8), C42.C27C10, C22⋊Q8.9C10, C22.5(Q8×C10), C42.41(C2×C10), C10.62(C22×Q8), (C4×C20).282C22, (C2×C20).673C23, (C2×C10).364C24, C42⋊C2.13C10, C2.8(C5×2- (1+4)), C23.40(C22×C10), C22.38(C23×C10), (Q8×C10).183C22, C2.11(C5×2+ (1+4)), (C22×C20).452C22, (C22×C10).263C23, (C2×C4)⋊2(C5×Q8), C2.8(Q8×C2×C10), (C5×C4⋊Q8)⋊33C2, (C10×C4⋊C4).49C2, (C2×C4⋊C4).20C10, C4⋊C4.30(C2×C10), (C2×C10).18(C2×Q8), (C2×Q8).27(C2×C10), (C5×C42.C2)⋊24C2, (C5×C22⋊Q8).19C2, (C5×C4⋊C4).394C22, C22⋊C4.18(C2×C10), (C22×C4).64(C2×C10), (C2×C4).31(C22×C10), (C5×C42⋊C2).27C2, (C5×C22⋊C4).152C22, SmallGroup(320,1546)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C23.41C23
C1C2C22C2×C10C2×C20C5×C4⋊C4C5×C4⋊Q8 — C5×C23.41C23
C1C22 — C5×C23.41C23
C1C2×C10 — C5×C23.41C23

Subgroups: 274 in 206 conjugacy classes, 162 normal (18 characteristic)
C1, C2 [×3], C2 [×2], C4 [×4], C4 [×12], C22, C22 [×2], C22 [×2], C5, C2×C4 [×18], C2×C4 [×2], Q8 [×4], C23, C10 [×3], C10 [×2], C42 [×4], C22⋊C4 [×4], C4⋊C4 [×20], C22×C4, C22×C4 [×2], C2×Q8 [×4], C20 [×4], C20 [×12], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C4⋊C4, C42⋊C2 [×2], C22⋊Q8 [×4], C42.C2 [×4], C4⋊Q8 [×4], C2×C20 [×18], C2×C20 [×2], C5×Q8 [×4], C22×C10, C23.41C23, C4×C20 [×4], C5×C22⋊C4 [×4], C5×C4⋊C4 [×20], C22×C20, C22×C20 [×2], Q8×C10 [×4], C10×C4⋊C4, C5×C42⋊C2 [×2], C5×C22⋊Q8 [×4], C5×C42.C2 [×4], C5×C4⋊Q8 [×4], C5×C23.41C23

Quotients:
C1, C2 [×15], C22 [×35], C5, Q8 [×4], C23 [×15], C10 [×15], C2×Q8 [×6], C24, C2×C10 [×35], C22×Q8, 2+ (1+4), 2- (1+4), C5×Q8 [×4], C22×C10 [×15], C23.41C23, Q8×C10 [×6], C23×C10, Q8×C2×C10, C5×2+ (1+4), C5×2- (1+4), C5×C23.41C23

Generators and relations
 G = < a,b,c,d,e,f,g | a5=b2=c2=d2=1, e2=g2=d, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, ebe-1=bc=cb, bd=db, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, gfg-1=cf=fc, cg=gc, geg-1=de=ed, df=fd, dg=gd >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 30)(2 26)(3 27)(4 28)(5 29)(6 11)(7 12)(8 13)(9 14)(10 15)(16 156)(17 157)(18 158)(19 159)(20 160)(21 33)(22 34)(23 35)(24 31)(25 32)(36 50)(37 46)(38 47)(39 48)(40 49)(41 53)(42 54)(43 55)(44 51)(45 52)(56 70)(57 66)(58 67)(59 68)(60 69)(61 73)(62 74)(63 75)(64 71)(65 72)(76 90)(77 86)(78 87)(79 88)(80 89)(81 93)(82 94)(83 95)(84 91)(85 92)(96 103)(97 104)(98 105)(99 101)(100 102)(106 111)(107 112)(108 113)(109 114)(110 115)(116 123)(117 124)(118 125)(119 121)(120 122)(126 131)(127 132)(128 133)(129 134)(130 135)(136 143)(137 144)(138 145)(139 141)(140 142)(146 151)(147 152)(148 153)(149 154)(150 155)
(1 35)(2 31)(3 32)(4 33)(5 34)(6 16)(7 17)(8 18)(9 19)(10 20)(11 156)(12 157)(13 158)(14 159)(15 160)(21 28)(22 29)(23 30)(24 26)(25 27)(36 55)(37 51)(38 52)(39 53)(40 54)(41 48)(42 49)(43 50)(44 46)(45 47)(56 75)(57 71)(58 72)(59 73)(60 74)(61 68)(62 69)(63 70)(64 66)(65 67)(76 95)(77 91)(78 92)(79 93)(80 94)(81 88)(82 89)(83 90)(84 86)(85 87)(96 115)(97 111)(98 112)(99 113)(100 114)(101 108)(102 109)(103 110)(104 106)(105 107)(116 135)(117 131)(118 132)(119 133)(120 134)(121 128)(122 129)(123 130)(124 126)(125 127)(136 155)(137 151)(138 152)(139 153)(140 154)(141 148)(142 149)(143 150)(144 146)(145 147)
(1 30)(2 26)(3 27)(4 28)(5 29)(6 156)(7 157)(8 158)(9 159)(10 160)(11 16)(12 17)(13 18)(14 19)(15 20)(21 33)(22 34)(23 35)(24 31)(25 32)(36 50)(37 46)(38 47)(39 48)(40 49)(41 53)(42 54)(43 55)(44 51)(45 52)(56 70)(57 66)(58 67)(59 68)(60 69)(61 73)(62 74)(63 75)(64 71)(65 72)(76 90)(77 86)(78 87)(79 88)(80 89)(81 93)(82 94)(83 95)(84 91)(85 92)(96 110)(97 106)(98 107)(99 108)(100 109)(101 113)(102 114)(103 115)(104 111)(105 112)(116 130)(117 126)(118 127)(119 128)(120 129)(121 133)(122 134)(123 135)(124 131)(125 132)(136 150)(137 146)(138 147)(139 148)(140 149)(141 153)(142 154)(143 155)(144 151)(145 152)
(1 110 30 96)(2 106 26 97)(3 107 27 98)(4 108 28 99)(5 109 29 100)(6 90 156 76)(7 86 157 77)(8 87 158 78)(9 88 159 79)(10 89 160 80)(11 95 16 83)(12 91 17 84)(13 92 18 85)(14 93 19 81)(15 94 20 82)(21 113 33 101)(22 114 34 102)(23 115 35 103)(24 111 31 104)(25 112 32 105)(36 130 50 116)(37 126 46 117)(38 127 47 118)(39 128 48 119)(40 129 49 120)(41 133 53 121)(42 134 54 122)(43 135 55 123)(44 131 51 124)(45 132 52 125)(56 150 70 136)(57 146 66 137)(58 147 67 138)(59 148 68 139)(60 149 69 140)(61 153 73 141)(62 154 74 142)(63 155 75 143)(64 151 71 144)(65 152 72 145)
(1 75 35 56)(2 71 31 57)(3 72 32 58)(4 73 33 59)(5 74 34 60)(6 123 16 130)(7 124 17 126)(8 125 18 127)(9 121 19 128)(10 122 20 129)(11 116 156 135)(12 117 157 131)(13 118 158 132)(14 119 159 133)(15 120 160 134)(21 68 28 61)(22 69 29 62)(23 70 30 63)(24 66 26 64)(25 67 27 65)(36 95 55 76)(37 91 51 77)(38 92 52 78)(39 93 53 79)(40 94 54 80)(41 88 48 81)(42 89 49 82)(43 90 50 83)(44 86 46 84)(45 87 47 85)(96 136 115 155)(97 137 111 151)(98 138 112 152)(99 139 113 153)(100 140 114 154)(101 141 108 148)(102 142 109 149)(103 143 110 150)(104 144 106 146)(105 145 107 147)
(1 50 30 36)(2 46 26 37)(3 47 27 38)(4 48 28 39)(5 49 29 40)(6 155 156 143)(7 151 157 144)(8 152 158 145)(9 153 159 141)(10 154 160 142)(11 150 16 136)(12 146 17 137)(13 147 18 138)(14 148 19 139)(15 149 20 140)(21 53 33 41)(22 54 34 42)(23 55 35 43)(24 51 31 44)(25 52 32 45)(56 83 70 95)(57 84 66 91)(58 85 67 92)(59 81 68 93)(60 82 69 94)(61 79 73 88)(62 80 74 89)(63 76 75 90)(64 77 71 86)(65 78 72 87)(96 116 110 130)(97 117 106 126)(98 118 107 127)(99 119 108 128)(100 120 109 129)(101 121 113 133)(102 122 114 134)(103 123 115 135)(104 124 111 131)(105 125 112 132)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,30)(2,26)(3,27)(4,28)(5,29)(6,11)(7,12)(8,13)(9,14)(10,15)(16,156)(17,157)(18,158)(19,159)(20,160)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,103)(97,104)(98,105)(99,101)(100,102)(106,111)(107,112)(108,113)(109,114)(110,115)(116,123)(117,124)(118,125)(119,121)(120,122)(126,131)(127,132)(128,133)(129,134)(130,135)(136,143)(137,144)(138,145)(139,141)(140,142)(146,151)(147,152)(148,153)(149,154)(150,155), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147), (1,30)(2,26)(3,27)(4,28)(5,29)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,110)(97,106)(98,107)(99,108)(100,109)(101,113)(102,114)(103,115)(104,111)(105,112)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,150)(137,146)(138,147)(139,148)(140,149)(141,153)(142,154)(143,155)(144,151)(145,152), (1,110,30,96)(2,106,26,97)(3,107,27,98)(4,108,28,99)(5,109,29,100)(6,90,156,76)(7,86,157,77)(8,87,158,78)(9,88,159,79)(10,89,160,80)(11,95,16,83)(12,91,17,84)(13,92,18,85)(14,93,19,81)(15,94,20,82)(21,113,33,101)(22,114,34,102)(23,115,35,103)(24,111,31,104)(25,112,32,105)(36,130,50,116)(37,126,46,117)(38,127,47,118)(39,128,48,119)(40,129,49,120)(41,133,53,121)(42,134,54,122)(43,135,55,123)(44,131,51,124)(45,132,52,125)(56,150,70,136)(57,146,66,137)(58,147,67,138)(59,148,68,139)(60,149,69,140)(61,153,73,141)(62,154,74,142)(63,155,75,143)(64,151,71,144)(65,152,72,145), (1,75,35,56)(2,71,31,57)(3,72,32,58)(4,73,33,59)(5,74,34,60)(6,123,16,130)(7,124,17,126)(8,125,18,127)(9,121,19,128)(10,122,20,129)(11,116,156,135)(12,117,157,131)(13,118,158,132)(14,119,159,133)(15,120,160,134)(21,68,28,61)(22,69,29,62)(23,70,30,63)(24,66,26,64)(25,67,27,65)(36,95,55,76)(37,91,51,77)(38,92,52,78)(39,93,53,79)(40,94,54,80)(41,88,48,81)(42,89,49,82)(43,90,50,83)(44,86,46,84)(45,87,47,85)(96,136,115,155)(97,137,111,151)(98,138,112,152)(99,139,113,153)(100,140,114,154)(101,141,108,148)(102,142,109,149)(103,143,110,150)(104,144,106,146)(105,145,107,147), (1,50,30,36)(2,46,26,37)(3,47,27,38)(4,48,28,39)(5,49,29,40)(6,155,156,143)(7,151,157,144)(8,152,158,145)(9,153,159,141)(10,154,160,142)(11,150,16,136)(12,146,17,137)(13,147,18,138)(14,148,19,139)(15,149,20,140)(21,53,33,41)(22,54,34,42)(23,55,35,43)(24,51,31,44)(25,52,32,45)(56,83,70,95)(57,84,66,91)(58,85,67,92)(59,81,68,93)(60,82,69,94)(61,79,73,88)(62,80,74,89)(63,76,75,90)(64,77,71,86)(65,78,72,87)(96,116,110,130)(97,117,106,126)(98,118,107,127)(99,119,108,128)(100,120,109,129)(101,121,113,133)(102,122,114,134)(103,123,115,135)(104,124,111,131)(105,125,112,132)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,30)(2,26)(3,27)(4,28)(5,29)(6,11)(7,12)(8,13)(9,14)(10,15)(16,156)(17,157)(18,158)(19,159)(20,160)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,103)(97,104)(98,105)(99,101)(100,102)(106,111)(107,112)(108,113)(109,114)(110,115)(116,123)(117,124)(118,125)(119,121)(120,122)(126,131)(127,132)(128,133)(129,134)(130,135)(136,143)(137,144)(138,145)(139,141)(140,142)(146,151)(147,152)(148,153)(149,154)(150,155), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147), (1,30)(2,26)(3,27)(4,28)(5,29)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,110)(97,106)(98,107)(99,108)(100,109)(101,113)(102,114)(103,115)(104,111)(105,112)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,150)(137,146)(138,147)(139,148)(140,149)(141,153)(142,154)(143,155)(144,151)(145,152), (1,110,30,96)(2,106,26,97)(3,107,27,98)(4,108,28,99)(5,109,29,100)(6,90,156,76)(7,86,157,77)(8,87,158,78)(9,88,159,79)(10,89,160,80)(11,95,16,83)(12,91,17,84)(13,92,18,85)(14,93,19,81)(15,94,20,82)(21,113,33,101)(22,114,34,102)(23,115,35,103)(24,111,31,104)(25,112,32,105)(36,130,50,116)(37,126,46,117)(38,127,47,118)(39,128,48,119)(40,129,49,120)(41,133,53,121)(42,134,54,122)(43,135,55,123)(44,131,51,124)(45,132,52,125)(56,150,70,136)(57,146,66,137)(58,147,67,138)(59,148,68,139)(60,149,69,140)(61,153,73,141)(62,154,74,142)(63,155,75,143)(64,151,71,144)(65,152,72,145), (1,75,35,56)(2,71,31,57)(3,72,32,58)(4,73,33,59)(5,74,34,60)(6,123,16,130)(7,124,17,126)(8,125,18,127)(9,121,19,128)(10,122,20,129)(11,116,156,135)(12,117,157,131)(13,118,158,132)(14,119,159,133)(15,120,160,134)(21,68,28,61)(22,69,29,62)(23,70,30,63)(24,66,26,64)(25,67,27,65)(36,95,55,76)(37,91,51,77)(38,92,52,78)(39,93,53,79)(40,94,54,80)(41,88,48,81)(42,89,49,82)(43,90,50,83)(44,86,46,84)(45,87,47,85)(96,136,115,155)(97,137,111,151)(98,138,112,152)(99,139,113,153)(100,140,114,154)(101,141,108,148)(102,142,109,149)(103,143,110,150)(104,144,106,146)(105,145,107,147), (1,50,30,36)(2,46,26,37)(3,47,27,38)(4,48,28,39)(5,49,29,40)(6,155,156,143)(7,151,157,144)(8,152,158,145)(9,153,159,141)(10,154,160,142)(11,150,16,136)(12,146,17,137)(13,147,18,138)(14,148,19,139)(15,149,20,140)(21,53,33,41)(22,54,34,42)(23,55,35,43)(24,51,31,44)(25,52,32,45)(56,83,70,95)(57,84,66,91)(58,85,67,92)(59,81,68,93)(60,82,69,94)(61,79,73,88)(62,80,74,89)(63,76,75,90)(64,77,71,86)(65,78,72,87)(96,116,110,130)(97,117,106,126)(98,118,107,127)(99,119,108,128)(100,120,109,129)(101,121,113,133)(102,122,114,134)(103,123,115,135)(104,124,111,131)(105,125,112,132) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,30),(2,26),(3,27),(4,28),(5,29),(6,11),(7,12),(8,13),(9,14),(10,15),(16,156),(17,157),(18,158),(19,159),(20,160),(21,33),(22,34),(23,35),(24,31),(25,32),(36,50),(37,46),(38,47),(39,48),(40,49),(41,53),(42,54),(43,55),(44,51),(45,52),(56,70),(57,66),(58,67),(59,68),(60,69),(61,73),(62,74),(63,75),(64,71),(65,72),(76,90),(77,86),(78,87),(79,88),(80,89),(81,93),(82,94),(83,95),(84,91),(85,92),(96,103),(97,104),(98,105),(99,101),(100,102),(106,111),(107,112),(108,113),(109,114),(110,115),(116,123),(117,124),(118,125),(119,121),(120,122),(126,131),(127,132),(128,133),(129,134),(130,135),(136,143),(137,144),(138,145),(139,141),(140,142),(146,151),(147,152),(148,153),(149,154),(150,155)], [(1,35),(2,31),(3,32),(4,33),(5,34),(6,16),(7,17),(8,18),(9,19),(10,20),(11,156),(12,157),(13,158),(14,159),(15,160),(21,28),(22,29),(23,30),(24,26),(25,27),(36,55),(37,51),(38,52),(39,53),(40,54),(41,48),(42,49),(43,50),(44,46),(45,47),(56,75),(57,71),(58,72),(59,73),(60,74),(61,68),(62,69),(63,70),(64,66),(65,67),(76,95),(77,91),(78,92),(79,93),(80,94),(81,88),(82,89),(83,90),(84,86),(85,87),(96,115),(97,111),(98,112),(99,113),(100,114),(101,108),(102,109),(103,110),(104,106),(105,107),(116,135),(117,131),(118,132),(119,133),(120,134),(121,128),(122,129),(123,130),(124,126),(125,127),(136,155),(137,151),(138,152),(139,153),(140,154),(141,148),(142,149),(143,150),(144,146),(145,147)], [(1,30),(2,26),(3,27),(4,28),(5,29),(6,156),(7,157),(8,158),(9,159),(10,160),(11,16),(12,17),(13,18),(14,19),(15,20),(21,33),(22,34),(23,35),(24,31),(25,32),(36,50),(37,46),(38,47),(39,48),(40,49),(41,53),(42,54),(43,55),(44,51),(45,52),(56,70),(57,66),(58,67),(59,68),(60,69),(61,73),(62,74),(63,75),(64,71),(65,72),(76,90),(77,86),(78,87),(79,88),(80,89),(81,93),(82,94),(83,95),(84,91),(85,92),(96,110),(97,106),(98,107),(99,108),(100,109),(101,113),(102,114),(103,115),(104,111),(105,112),(116,130),(117,126),(118,127),(119,128),(120,129),(121,133),(122,134),(123,135),(124,131),(125,132),(136,150),(137,146),(138,147),(139,148),(140,149),(141,153),(142,154),(143,155),(144,151),(145,152)], [(1,110,30,96),(2,106,26,97),(3,107,27,98),(4,108,28,99),(5,109,29,100),(6,90,156,76),(7,86,157,77),(8,87,158,78),(9,88,159,79),(10,89,160,80),(11,95,16,83),(12,91,17,84),(13,92,18,85),(14,93,19,81),(15,94,20,82),(21,113,33,101),(22,114,34,102),(23,115,35,103),(24,111,31,104),(25,112,32,105),(36,130,50,116),(37,126,46,117),(38,127,47,118),(39,128,48,119),(40,129,49,120),(41,133,53,121),(42,134,54,122),(43,135,55,123),(44,131,51,124),(45,132,52,125),(56,150,70,136),(57,146,66,137),(58,147,67,138),(59,148,68,139),(60,149,69,140),(61,153,73,141),(62,154,74,142),(63,155,75,143),(64,151,71,144),(65,152,72,145)], [(1,75,35,56),(2,71,31,57),(3,72,32,58),(4,73,33,59),(5,74,34,60),(6,123,16,130),(7,124,17,126),(8,125,18,127),(9,121,19,128),(10,122,20,129),(11,116,156,135),(12,117,157,131),(13,118,158,132),(14,119,159,133),(15,120,160,134),(21,68,28,61),(22,69,29,62),(23,70,30,63),(24,66,26,64),(25,67,27,65),(36,95,55,76),(37,91,51,77),(38,92,52,78),(39,93,53,79),(40,94,54,80),(41,88,48,81),(42,89,49,82),(43,90,50,83),(44,86,46,84),(45,87,47,85),(96,136,115,155),(97,137,111,151),(98,138,112,152),(99,139,113,153),(100,140,114,154),(101,141,108,148),(102,142,109,149),(103,143,110,150),(104,144,106,146),(105,145,107,147)], [(1,50,30,36),(2,46,26,37),(3,47,27,38),(4,48,28,39),(5,49,29,40),(6,155,156,143),(7,151,157,144),(8,152,158,145),(9,153,159,141),(10,154,160,142),(11,150,16,136),(12,146,17,137),(13,147,18,138),(14,148,19,139),(15,149,20,140),(21,53,33,41),(22,54,34,42),(23,55,35,43),(24,51,31,44),(25,52,32,45),(56,83,70,95),(57,84,66,91),(58,85,67,92),(59,81,68,93),(60,82,69,94),(61,79,73,88),(62,80,74,89),(63,76,75,90),(64,77,71,86),(65,78,72,87),(96,116,110,130),(97,117,106,126),(98,118,107,127),(99,119,108,128),(100,120,109,129),(101,121,113,133),(102,122,114,134),(103,123,115,135),(104,124,111,131),(105,125,112,132)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
0010000
0001000
0000100
0000010
,
100000
010000
0040000
0004000
000010
000001
,
100000
010000
0040000
0004000
0000400
0000040
,
4000000
0400000
0040000
0004000
0000400
0000040
,
7280000
7340000
000010
000001
0040000
0004000
,
100000
010000
00114000
00403000
0000301
0000111
,
120000
40400000
000100
0040000
0000040
000010

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[7,7,0,0,0,0,28,34,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,40,0,0,0,0,40,30,0,0,0,0,0,0,30,1,0,0,0,0,1,11],[1,40,0,0,0,0,2,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0] >;

110 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4P5A5B5C5D10A···10L10M···10T20A···20P20Q···20BL
order12222244444···4555510···1010···1020···2020···20
size11112222224···411111···12···22···24···4

110 irreducible representations

dim111111111111224444
type++++++-+-
imageC1C2C2C2C2C2C5C10C10C10C10C10Q8C5×Q82+ (1+4)2- (1+4)C5×2+ (1+4)C5×2- (1+4)
kernelC5×C23.41C23C10×C4⋊C4C5×C42⋊C2C5×C22⋊Q8C5×C42.C2C5×C4⋊Q8C23.41C23C2×C4⋊C4C42⋊C2C22⋊Q8C42.C2C4⋊Q8C2×C20C2×C4C10C10C2C2
# reps1124444481616164161144

In GAP, Magma, Sage, TeX

C_5\times C_2^3._{41}C_2^3
% in TeX

G:=Group("C5xC2^3.41C2^3");
// GroupNames label

G:=SmallGroup(320,1546);
// by ID

G=gap.SmallGroup(320,1546);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,568,3446,891,856,2467]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=1,e^2=g^2=d,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*b*e^-1=b*c=c*b,b*d=d*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,g*f*g^-1=c*f=f*c,c*g=g*c,g*e*g^-1=d*e=e*d,d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽