direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C23.41C23, C10.1162- (1+4), C10.1592+ (1+4), (C2×C20)⋊9Q8, C4⋊Q8⋊12C10, C4.11(Q8×C10), C20.100(C2×Q8), C42.C2⋊7C10, C22⋊Q8.9C10, C22.5(Q8×C10), C42.41(C2×C10), C10.62(C22×Q8), (C4×C20).282C22, (C2×C20).673C23, (C2×C10).364C24, C42⋊C2.13C10, C2.8(C5×2- (1+4)), C23.40(C22×C10), C22.38(C23×C10), (Q8×C10).183C22, C2.11(C5×2+ (1+4)), (C22×C20).452C22, (C22×C10).263C23, (C2×C4)⋊2(C5×Q8), C2.8(Q8×C2×C10), (C5×C4⋊Q8)⋊33C2, (C10×C4⋊C4).49C2, (C2×C4⋊C4).20C10, C4⋊C4.30(C2×C10), (C2×C10).18(C2×Q8), (C2×Q8).27(C2×C10), (C5×C42.C2)⋊24C2, (C5×C22⋊Q8).19C2, (C5×C4⋊C4).394C22, C22⋊C4.18(C2×C10), (C22×C4).64(C2×C10), (C2×C4).31(C22×C10), (C5×C42⋊C2).27C2, (C5×C22⋊C4).152C22, SmallGroup(320,1546)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C10 — C2×C20 — C5×C4⋊C4 — C5×C4⋊Q8 — C5×C23.41C23 |
Subgroups: 274 in 206 conjugacy classes, 162 normal (18 characteristic)
C1, C2 [×3], C2 [×2], C4 [×4], C4 [×12], C22, C22 [×2], C22 [×2], C5, C2×C4 [×18], C2×C4 [×2], Q8 [×4], C23, C10 [×3], C10 [×2], C42 [×4], C22⋊C4 [×4], C4⋊C4 [×20], C22×C4, C22×C4 [×2], C2×Q8 [×4], C20 [×4], C20 [×12], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C4⋊C4, C42⋊C2 [×2], C22⋊Q8 [×4], C42.C2 [×4], C4⋊Q8 [×4], C2×C20 [×18], C2×C20 [×2], C5×Q8 [×4], C22×C10, C23.41C23, C4×C20 [×4], C5×C22⋊C4 [×4], C5×C4⋊C4 [×20], C22×C20, C22×C20 [×2], Q8×C10 [×4], C10×C4⋊C4, C5×C42⋊C2 [×2], C5×C22⋊Q8 [×4], C5×C42.C2 [×4], C5×C4⋊Q8 [×4], C5×C23.41C23
Quotients:
C1, C2 [×15], C22 [×35], C5, Q8 [×4], C23 [×15], C10 [×15], C2×Q8 [×6], C24, C2×C10 [×35], C22×Q8, 2+ (1+4), 2- (1+4), C5×Q8 [×4], C22×C10 [×15], C23.41C23, Q8×C10 [×6], C23×C10, Q8×C2×C10, C5×2+ (1+4), C5×2- (1+4), C5×C23.41C23
Generators and relations
G = < a,b,c,d,e,f,g | a5=b2=c2=d2=1, e2=g2=d, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, ebe-1=bc=cb, bd=db, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, gfg-1=cf=fc, cg=gc, geg-1=de=ed, df=fd, dg=gd >
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 30)(2 26)(3 27)(4 28)(5 29)(6 11)(7 12)(8 13)(9 14)(10 15)(16 156)(17 157)(18 158)(19 159)(20 160)(21 33)(22 34)(23 35)(24 31)(25 32)(36 50)(37 46)(38 47)(39 48)(40 49)(41 53)(42 54)(43 55)(44 51)(45 52)(56 70)(57 66)(58 67)(59 68)(60 69)(61 73)(62 74)(63 75)(64 71)(65 72)(76 90)(77 86)(78 87)(79 88)(80 89)(81 93)(82 94)(83 95)(84 91)(85 92)(96 103)(97 104)(98 105)(99 101)(100 102)(106 111)(107 112)(108 113)(109 114)(110 115)(116 123)(117 124)(118 125)(119 121)(120 122)(126 131)(127 132)(128 133)(129 134)(130 135)(136 143)(137 144)(138 145)(139 141)(140 142)(146 151)(147 152)(148 153)(149 154)(150 155)
(1 35)(2 31)(3 32)(4 33)(5 34)(6 16)(7 17)(8 18)(9 19)(10 20)(11 156)(12 157)(13 158)(14 159)(15 160)(21 28)(22 29)(23 30)(24 26)(25 27)(36 55)(37 51)(38 52)(39 53)(40 54)(41 48)(42 49)(43 50)(44 46)(45 47)(56 75)(57 71)(58 72)(59 73)(60 74)(61 68)(62 69)(63 70)(64 66)(65 67)(76 95)(77 91)(78 92)(79 93)(80 94)(81 88)(82 89)(83 90)(84 86)(85 87)(96 115)(97 111)(98 112)(99 113)(100 114)(101 108)(102 109)(103 110)(104 106)(105 107)(116 135)(117 131)(118 132)(119 133)(120 134)(121 128)(122 129)(123 130)(124 126)(125 127)(136 155)(137 151)(138 152)(139 153)(140 154)(141 148)(142 149)(143 150)(144 146)(145 147)
(1 30)(2 26)(3 27)(4 28)(5 29)(6 156)(7 157)(8 158)(9 159)(10 160)(11 16)(12 17)(13 18)(14 19)(15 20)(21 33)(22 34)(23 35)(24 31)(25 32)(36 50)(37 46)(38 47)(39 48)(40 49)(41 53)(42 54)(43 55)(44 51)(45 52)(56 70)(57 66)(58 67)(59 68)(60 69)(61 73)(62 74)(63 75)(64 71)(65 72)(76 90)(77 86)(78 87)(79 88)(80 89)(81 93)(82 94)(83 95)(84 91)(85 92)(96 110)(97 106)(98 107)(99 108)(100 109)(101 113)(102 114)(103 115)(104 111)(105 112)(116 130)(117 126)(118 127)(119 128)(120 129)(121 133)(122 134)(123 135)(124 131)(125 132)(136 150)(137 146)(138 147)(139 148)(140 149)(141 153)(142 154)(143 155)(144 151)(145 152)
(1 110 30 96)(2 106 26 97)(3 107 27 98)(4 108 28 99)(5 109 29 100)(6 90 156 76)(7 86 157 77)(8 87 158 78)(9 88 159 79)(10 89 160 80)(11 95 16 83)(12 91 17 84)(13 92 18 85)(14 93 19 81)(15 94 20 82)(21 113 33 101)(22 114 34 102)(23 115 35 103)(24 111 31 104)(25 112 32 105)(36 130 50 116)(37 126 46 117)(38 127 47 118)(39 128 48 119)(40 129 49 120)(41 133 53 121)(42 134 54 122)(43 135 55 123)(44 131 51 124)(45 132 52 125)(56 150 70 136)(57 146 66 137)(58 147 67 138)(59 148 68 139)(60 149 69 140)(61 153 73 141)(62 154 74 142)(63 155 75 143)(64 151 71 144)(65 152 72 145)
(1 75 35 56)(2 71 31 57)(3 72 32 58)(4 73 33 59)(5 74 34 60)(6 123 16 130)(7 124 17 126)(8 125 18 127)(9 121 19 128)(10 122 20 129)(11 116 156 135)(12 117 157 131)(13 118 158 132)(14 119 159 133)(15 120 160 134)(21 68 28 61)(22 69 29 62)(23 70 30 63)(24 66 26 64)(25 67 27 65)(36 95 55 76)(37 91 51 77)(38 92 52 78)(39 93 53 79)(40 94 54 80)(41 88 48 81)(42 89 49 82)(43 90 50 83)(44 86 46 84)(45 87 47 85)(96 136 115 155)(97 137 111 151)(98 138 112 152)(99 139 113 153)(100 140 114 154)(101 141 108 148)(102 142 109 149)(103 143 110 150)(104 144 106 146)(105 145 107 147)
(1 50 30 36)(2 46 26 37)(3 47 27 38)(4 48 28 39)(5 49 29 40)(6 155 156 143)(7 151 157 144)(8 152 158 145)(9 153 159 141)(10 154 160 142)(11 150 16 136)(12 146 17 137)(13 147 18 138)(14 148 19 139)(15 149 20 140)(21 53 33 41)(22 54 34 42)(23 55 35 43)(24 51 31 44)(25 52 32 45)(56 83 70 95)(57 84 66 91)(58 85 67 92)(59 81 68 93)(60 82 69 94)(61 79 73 88)(62 80 74 89)(63 76 75 90)(64 77 71 86)(65 78 72 87)(96 116 110 130)(97 117 106 126)(98 118 107 127)(99 119 108 128)(100 120 109 129)(101 121 113 133)(102 122 114 134)(103 123 115 135)(104 124 111 131)(105 125 112 132)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,30)(2,26)(3,27)(4,28)(5,29)(6,11)(7,12)(8,13)(9,14)(10,15)(16,156)(17,157)(18,158)(19,159)(20,160)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,103)(97,104)(98,105)(99,101)(100,102)(106,111)(107,112)(108,113)(109,114)(110,115)(116,123)(117,124)(118,125)(119,121)(120,122)(126,131)(127,132)(128,133)(129,134)(130,135)(136,143)(137,144)(138,145)(139,141)(140,142)(146,151)(147,152)(148,153)(149,154)(150,155), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147), (1,30)(2,26)(3,27)(4,28)(5,29)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,110)(97,106)(98,107)(99,108)(100,109)(101,113)(102,114)(103,115)(104,111)(105,112)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,150)(137,146)(138,147)(139,148)(140,149)(141,153)(142,154)(143,155)(144,151)(145,152), (1,110,30,96)(2,106,26,97)(3,107,27,98)(4,108,28,99)(5,109,29,100)(6,90,156,76)(7,86,157,77)(8,87,158,78)(9,88,159,79)(10,89,160,80)(11,95,16,83)(12,91,17,84)(13,92,18,85)(14,93,19,81)(15,94,20,82)(21,113,33,101)(22,114,34,102)(23,115,35,103)(24,111,31,104)(25,112,32,105)(36,130,50,116)(37,126,46,117)(38,127,47,118)(39,128,48,119)(40,129,49,120)(41,133,53,121)(42,134,54,122)(43,135,55,123)(44,131,51,124)(45,132,52,125)(56,150,70,136)(57,146,66,137)(58,147,67,138)(59,148,68,139)(60,149,69,140)(61,153,73,141)(62,154,74,142)(63,155,75,143)(64,151,71,144)(65,152,72,145), (1,75,35,56)(2,71,31,57)(3,72,32,58)(4,73,33,59)(5,74,34,60)(6,123,16,130)(7,124,17,126)(8,125,18,127)(9,121,19,128)(10,122,20,129)(11,116,156,135)(12,117,157,131)(13,118,158,132)(14,119,159,133)(15,120,160,134)(21,68,28,61)(22,69,29,62)(23,70,30,63)(24,66,26,64)(25,67,27,65)(36,95,55,76)(37,91,51,77)(38,92,52,78)(39,93,53,79)(40,94,54,80)(41,88,48,81)(42,89,49,82)(43,90,50,83)(44,86,46,84)(45,87,47,85)(96,136,115,155)(97,137,111,151)(98,138,112,152)(99,139,113,153)(100,140,114,154)(101,141,108,148)(102,142,109,149)(103,143,110,150)(104,144,106,146)(105,145,107,147), (1,50,30,36)(2,46,26,37)(3,47,27,38)(4,48,28,39)(5,49,29,40)(6,155,156,143)(7,151,157,144)(8,152,158,145)(9,153,159,141)(10,154,160,142)(11,150,16,136)(12,146,17,137)(13,147,18,138)(14,148,19,139)(15,149,20,140)(21,53,33,41)(22,54,34,42)(23,55,35,43)(24,51,31,44)(25,52,32,45)(56,83,70,95)(57,84,66,91)(58,85,67,92)(59,81,68,93)(60,82,69,94)(61,79,73,88)(62,80,74,89)(63,76,75,90)(64,77,71,86)(65,78,72,87)(96,116,110,130)(97,117,106,126)(98,118,107,127)(99,119,108,128)(100,120,109,129)(101,121,113,133)(102,122,114,134)(103,123,115,135)(104,124,111,131)(105,125,112,132)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,30)(2,26)(3,27)(4,28)(5,29)(6,11)(7,12)(8,13)(9,14)(10,15)(16,156)(17,157)(18,158)(19,159)(20,160)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,103)(97,104)(98,105)(99,101)(100,102)(106,111)(107,112)(108,113)(109,114)(110,115)(116,123)(117,124)(118,125)(119,121)(120,122)(126,131)(127,132)(128,133)(129,134)(130,135)(136,143)(137,144)(138,145)(139,141)(140,142)(146,151)(147,152)(148,153)(149,154)(150,155), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147), (1,30)(2,26)(3,27)(4,28)(5,29)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,110)(97,106)(98,107)(99,108)(100,109)(101,113)(102,114)(103,115)(104,111)(105,112)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,150)(137,146)(138,147)(139,148)(140,149)(141,153)(142,154)(143,155)(144,151)(145,152), (1,110,30,96)(2,106,26,97)(3,107,27,98)(4,108,28,99)(5,109,29,100)(6,90,156,76)(7,86,157,77)(8,87,158,78)(9,88,159,79)(10,89,160,80)(11,95,16,83)(12,91,17,84)(13,92,18,85)(14,93,19,81)(15,94,20,82)(21,113,33,101)(22,114,34,102)(23,115,35,103)(24,111,31,104)(25,112,32,105)(36,130,50,116)(37,126,46,117)(38,127,47,118)(39,128,48,119)(40,129,49,120)(41,133,53,121)(42,134,54,122)(43,135,55,123)(44,131,51,124)(45,132,52,125)(56,150,70,136)(57,146,66,137)(58,147,67,138)(59,148,68,139)(60,149,69,140)(61,153,73,141)(62,154,74,142)(63,155,75,143)(64,151,71,144)(65,152,72,145), (1,75,35,56)(2,71,31,57)(3,72,32,58)(4,73,33,59)(5,74,34,60)(6,123,16,130)(7,124,17,126)(8,125,18,127)(9,121,19,128)(10,122,20,129)(11,116,156,135)(12,117,157,131)(13,118,158,132)(14,119,159,133)(15,120,160,134)(21,68,28,61)(22,69,29,62)(23,70,30,63)(24,66,26,64)(25,67,27,65)(36,95,55,76)(37,91,51,77)(38,92,52,78)(39,93,53,79)(40,94,54,80)(41,88,48,81)(42,89,49,82)(43,90,50,83)(44,86,46,84)(45,87,47,85)(96,136,115,155)(97,137,111,151)(98,138,112,152)(99,139,113,153)(100,140,114,154)(101,141,108,148)(102,142,109,149)(103,143,110,150)(104,144,106,146)(105,145,107,147), (1,50,30,36)(2,46,26,37)(3,47,27,38)(4,48,28,39)(5,49,29,40)(6,155,156,143)(7,151,157,144)(8,152,158,145)(9,153,159,141)(10,154,160,142)(11,150,16,136)(12,146,17,137)(13,147,18,138)(14,148,19,139)(15,149,20,140)(21,53,33,41)(22,54,34,42)(23,55,35,43)(24,51,31,44)(25,52,32,45)(56,83,70,95)(57,84,66,91)(58,85,67,92)(59,81,68,93)(60,82,69,94)(61,79,73,88)(62,80,74,89)(63,76,75,90)(64,77,71,86)(65,78,72,87)(96,116,110,130)(97,117,106,126)(98,118,107,127)(99,119,108,128)(100,120,109,129)(101,121,113,133)(102,122,114,134)(103,123,115,135)(104,124,111,131)(105,125,112,132) );
G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,30),(2,26),(3,27),(4,28),(5,29),(6,11),(7,12),(8,13),(9,14),(10,15),(16,156),(17,157),(18,158),(19,159),(20,160),(21,33),(22,34),(23,35),(24,31),(25,32),(36,50),(37,46),(38,47),(39,48),(40,49),(41,53),(42,54),(43,55),(44,51),(45,52),(56,70),(57,66),(58,67),(59,68),(60,69),(61,73),(62,74),(63,75),(64,71),(65,72),(76,90),(77,86),(78,87),(79,88),(80,89),(81,93),(82,94),(83,95),(84,91),(85,92),(96,103),(97,104),(98,105),(99,101),(100,102),(106,111),(107,112),(108,113),(109,114),(110,115),(116,123),(117,124),(118,125),(119,121),(120,122),(126,131),(127,132),(128,133),(129,134),(130,135),(136,143),(137,144),(138,145),(139,141),(140,142),(146,151),(147,152),(148,153),(149,154),(150,155)], [(1,35),(2,31),(3,32),(4,33),(5,34),(6,16),(7,17),(8,18),(9,19),(10,20),(11,156),(12,157),(13,158),(14,159),(15,160),(21,28),(22,29),(23,30),(24,26),(25,27),(36,55),(37,51),(38,52),(39,53),(40,54),(41,48),(42,49),(43,50),(44,46),(45,47),(56,75),(57,71),(58,72),(59,73),(60,74),(61,68),(62,69),(63,70),(64,66),(65,67),(76,95),(77,91),(78,92),(79,93),(80,94),(81,88),(82,89),(83,90),(84,86),(85,87),(96,115),(97,111),(98,112),(99,113),(100,114),(101,108),(102,109),(103,110),(104,106),(105,107),(116,135),(117,131),(118,132),(119,133),(120,134),(121,128),(122,129),(123,130),(124,126),(125,127),(136,155),(137,151),(138,152),(139,153),(140,154),(141,148),(142,149),(143,150),(144,146),(145,147)], [(1,30),(2,26),(3,27),(4,28),(5,29),(6,156),(7,157),(8,158),(9,159),(10,160),(11,16),(12,17),(13,18),(14,19),(15,20),(21,33),(22,34),(23,35),(24,31),(25,32),(36,50),(37,46),(38,47),(39,48),(40,49),(41,53),(42,54),(43,55),(44,51),(45,52),(56,70),(57,66),(58,67),(59,68),(60,69),(61,73),(62,74),(63,75),(64,71),(65,72),(76,90),(77,86),(78,87),(79,88),(80,89),(81,93),(82,94),(83,95),(84,91),(85,92),(96,110),(97,106),(98,107),(99,108),(100,109),(101,113),(102,114),(103,115),(104,111),(105,112),(116,130),(117,126),(118,127),(119,128),(120,129),(121,133),(122,134),(123,135),(124,131),(125,132),(136,150),(137,146),(138,147),(139,148),(140,149),(141,153),(142,154),(143,155),(144,151),(145,152)], [(1,110,30,96),(2,106,26,97),(3,107,27,98),(4,108,28,99),(5,109,29,100),(6,90,156,76),(7,86,157,77),(8,87,158,78),(9,88,159,79),(10,89,160,80),(11,95,16,83),(12,91,17,84),(13,92,18,85),(14,93,19,81),(15,94,20,82),(21,113,33,101),(22,114,34,102),(23,115,35,103),(24,111,31,104),(25,112,32,105),(36,130,50,116),(37,126,46,117),(38,127,47,118),(39,128,48,119),(40,129,49,120),(41,133,53,121),(42,134,54,122),(43,135,55,123),(44,131,51,124),(45,132,52,125),(56,150,70,136),(57,146,66,137),(58,147,67,138),(59,148,68,139),(60,149,69,140),(61,153,73,141),(62,154,74,142),(63,155,75,143),(64,151,71,144),(65,152,72,145)], [(1,75,35,56),(2,71,31,57),(3,72,32,58),(4,73,33,59),(5,74,34,60),(6,123,16,130),(7,124,17,126),(8,125,18,127),(9,121,19,128),(10,122,20,129),(11,116,156,135),(12,117,157,131),(13,118,158,132),(14,119,159,133),(15,120,160,134),(21,68,28,61),(22,69,29,62),(23,70,30,63),(24,66,26,64),(25,67,27,65),(36,95,55,76),(37,91,51,77),(38,92,52,78),(39,93,53,79),(40,94,54,80),(41,88,48,81),(42,89,49,82),(43,90,50,83),(44,86,46,84),(45,87,47,85),(96,136,115,155),(97,137,111,151),(98,138,112,152),(99,139,113,153),(100,140,114,154),(101,141,108,148),(102,142,109,149),(103,143,110,150),(104,144,106,146),(105,145,107,147)], [(1,50,30,36),(2,46,26,37),(3,47,27,38),(4,48,28,39),(5,49,29,40),(6,155,156,143),(7,151,157,144),(8,152,158,145),(9,153,159,141),(10,154,160,142),(11,150,16,136),(12,146,17,137),(13,147,18,138),(14,148,19,139),(15,149,20,140),(21,53,33,41),(22,54,34,42),(23,55,35,43),(24,51,31,44),(25,52,32,45),(56,83,70,95),(57,84,66,91),(58,85,67,92),(59,81,68,93),(60,82,69,94),(61,79,73,88),(62,80,74,89),(63,76,75,90),(64,77,71,86),(65,78,72,87),(96,116,110,130),(97,117,106,126),(98,118,107,127),(99,119,108,128),(100,120,109,129),(101,121,113,133),(102,122,114,134),(103,123,115,135),(104,124,111,131),(105,125,112,132)])
Matrix representation ►G ⊆ GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 0 |
0 | 0 | 0 | 0 | 0 | 10 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
7 | 28 | 0 | 0 | 0 | 0 |
7 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 40 | 0 | 0 |
0 | 0 | 40 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 1 |
0 | 0 | 0 | 0 | 1 | 11 |
1 | 2 | 0 | 0 | 0 | 0 |
40 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[7,7,0,0,0,0,28,34,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,40,0,0,0,0,40,30,0,0,0,0,0,0,30,1,0,0,0,0,1,11],[1,40,0,0,0,0,2,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0] >;
110 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | ··· | 4P | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 10M | ··· | 10T | 20A | ··· | 20P | 20Q | ··· | 20BL |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
110 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | - | + | - | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | Q8 | C5×Q8 | 2+ (1+4) | 2- (1+4) | C5×2+ (1+4) | C5×2- (1+4) |
kernel | C5×C23.41C23 | C10×C4⋊C4 | C5×C42⋊C2 | C5×C22⋊Q8 | C5×C42.C2 | C5×C4⋊Q8 | C23.41C23 | C2×C4⋊C4 | C42⋊C2 | C22⋊Q8 | C42.C2 | C4⋊Q8 | C2×C20 | C2×C4 | C10 | C10 | C2 | C2 |
# reps | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 16 | 16 | 16 | 4 | 16 | 1 | 1 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_5\times C_2^3._{41}C_2^3
% in TeX
G:=Group("C5xC2^3.41C2^3");
// GroupNames label
G:=SmallGroup(320,1546);
// by ID
G=gap.SmallGroup(320,1546);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,568,3446,891,856,2467]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=1,e^2=g^2=d,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*b*e^-1=b*c=c*b,b*d=d*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,g*f*g^-1=c*f=f*c,c*g=g*c,g*e*g^-1=d*e=e*d,d*f=f*d,d*g=g*d>;
// generators/relations